Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 475
Filtrar
1.
Sci Rep ; 14(1): 7896, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570571

RESUMO

Ornamental foliage plants that have a dense appearance are highly valued. One way to achieve this is by using plant growth regulators as a tool for plant growth management. In a greenhouse with a mist irrigation system, a study was conducted on dwarf schefflera, an ornamental foliage plant, which was exposed to foliar application of gibberellic acid and benzyladenine hormones. The hormones were sprayed on dwarf schefflera leaves at 0, 100, and 200 mg/l concentrations, at 15-day intervals in three stages. The experiment was conducted as a factorial based on a completely randomized design, with four replicates. The combination of gibberellic acid and benzyladenine at 200 mg/l concentration had a significant effect on leaf number, leaf area, and plant height. The treatment also resulted in the highest content of photosynthetic pigments. Furthermore, the highest soluble carbohydrate to reducing sugars ratio was observed in treatments of 100 and 200 mg/l benzyladenine, and 200 mg/l gibberellic acid + benzyladenine. Stepwise regression analysis showed that root volume was the first variable to enter the model, explaining 44% of variations. The next variable was root fresh weight, and the two-variable model explained 63% of variations in leaf number. The greatest positive effect on leaf number was related to root fresh weight (0.43), which had a positive correlation with leaf number (0.47). The results showed that 200 mg/l concentration of gibberellic acid and benzyladenine significantly improved morphological growth, chlorophyll and carotenoid synthesis, and reducing sugar and soluble carbohydrate contents in dwarf schefflera.


Assuntos
Benzilaminas , Giberelinas , Giberelinas/farmacologia , Benzilaminas/farmacologia , Plantas , Carboidratos/análise , Hormônios/farmacologia , Folhas de Planta/química
2.
J Exp Bot ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652155

RESUMO

Medicinal plants are integral to traditional medicine systems world-wide, being pivotal for human health. Harvesting plant material from natural environments, however, has led to species scarcity, prompting action to develop cultivation solutions that also aid conservation efforts. Biotechnological tools, specifically plant tissue culture and genetic transformation, offer solutions for sustainable, large-scale production and enhanced yield of valuable biomolecules. While these techniques are instrumental to the development of the medicinal plant industry, the challenge of inherent regeneration recalcitrance in some species to in vitro cultivation hampers these efforts. This review examines the strategies for overcoming recalcitrance in medicinal plants using a holistic approach, emphasising the meticulous choice of explants, e.g. embryonic/meristematic tissues; plant growth regulators, e.g. synthetic cytokinins; and use of novel regeneration-enabling methods to deliver morphogenic genes e.g. GRF/GIF chimeras and nanoparticles, which have been shown to contribute to overcoming recalcitrance barriers in agriculture crops. Furthermore, it highlights the benefit of cost-effective genomic technologies that enable precise genome editing and the value of integrating data-driven models to address genotype-specific challenges in medicinal plant research. These advances mark a progressive step towards a future where medicinal plant cultivation is not only more efficient and predictable but also inherently sustainable, ensuring the continued availability and exploitation of these important plants for current and future generations.

3.
J Agric Food Chem ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655868

RESUMO

Insect growth regulators (IGRs) are important green insecticides that disrupt normal growth and development in insects to reduce the harm caused by pests to crops. The ecdysone receptor (EcR) and three chitinases OfChtI, OfChtII, and OfChi-h are closely associated with the molting stage of insects. Thus, they are considered promising targets for the development of novel insecticides such as IGRs. Our previous work identified a dual-target compound 6j, which could act simultaneously on both EcR and OfChtI. In the present study, 6j was first found to have inhibitory activities against OfChtII and OfChi-h, too. Subsequently, taking 6j as a lead compound, 19 novel acetamido derivatives were rationally designed and synthesized by introducing an acetamido moiety into the amide bridge based on the flexibility of the binding cavities of 6j with EcR and three chitinases. Then, their insecticidal activities against Plutella xylostella (P. xylostella), Ostrinia furnacalis (O. furnacalis), and Spodoptera frugiperda (S. frugiperda) were carried out. The bioassay results revealed that most of these acetamido derivatives possessed moderate to good larvicidal activities against three lepidopteran pests. Especially, compound I-17 displayed excellent insecticidal activities against P. xylostella (LC50, 93.32 mg/L), O. furnacalis (LC50, 114.79 mg/L), and S. frugiperda (86.1% mortality at 500 mg/L), significantly better than that of 6j. In addition, further protein validation and molecular docking demonstrated that I-17 could act simultaneously on EcR (17.7% binding activity at 8 mg/L), OfChtI (69.2% inhibitory rate at 50 µM), OfChtII (71.5% inhibitory rate at 50 µM), and OfChi-h (73.9% inhibitory rate at 50 µM), indicating that I-17 is a potential lead candidate for novel multitarget IGRs. This work provides a promising starting point for the development of novel types of IGRs as pest management agents.

4.
Mol Biol Rep ; 51(1): 501, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598057

RESUMO

BACKGROUND: Dendrocalamus strictus (Roxb.) Nees, generally referred to as 'Male bamboo,' is a globally prevalent and highly significant species of bamboo. It is a versatile species and possesses notable industrial significance. However, despite its numerous applications, the production of this plant is insufficient to fulfill the worldwide demand. The challenges that impede the dissemination of D. strictus encompass the unpredictable blooming pattern (30-70 years), low seed production, and limited seed viability. Therefore, tissue culture presents a reliable and effective option for the mass production of standardized planting material. METHODOLOGY AND RESULTS: This study investigated the effects of silver nanoparticles (AgNPs) at a concentration of 6.0 mg L- 1 in the Murashige and Skoog (MS) nutrient medium fortified with pre-optimized plant growth regulators (3.0 mg L- 1 6-benzylaminopurine + 0.5 mg L- 1 α-naphthalene acetic acid) on the induction of flowering in a controlled environment in D. strictus. The use of AgNPs in the media induced a maximum of 14 inflorescences per culture vessel, 9 flowers per inflorescence, and improved the performance of the micropropagated plantlets during acclimatization in the greenhouse and field. The ISSR and SCoT amplified polymorphic DNA analysis of the regenerants resulted in the formation of 49 bands (300 to 2000 bp size) and 36 scorable bands (350 to 2000 bp) respectively. All the PCR amplicons produced by SCoT and ISSR were monomorphic confirming the genetic uniformity of the tissue cultured plants of D. strictus with the mother plant. CONCLUSIONS: It can be inferred that the incorporation of AgNPs during the shoot proliferation phase has the potential to stimulate in vitro flowering in D. strictus. This finding could provide valuable insights into innovative strategies for enhancing crop productivity and genetic manipulation for accelerated breeding and agricultural advancement.


Assuntos
Nanopartículas Metálicas , Prata/farmacologia , Melhoramento Vegetal , Biomarcadores , Aclimatação
5.
Plants (Basel) ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611486

RESUMO

Drought stress is one of the key factors restricting crop yield. The beneficial effects of exogenous proline on crop growth under drought stress have been demonstrated in maize, rice, and other crops. However, little is known about its effects on wheat under drought stress. Especially, the water-holding capacity of leaves were overlooked in most studies. Therefore, a barrel experiment was conducted with wheat at two drought levels (severe drought: 45% field capacity, mild drought: 60% field capacity), and three proline-spraying levels (0 mM, 25 mM, and 50 mM). Meanwhile, a control with no stress and no proline application was set. The anatomical features, water-holding capacity, antioxidant capacity, and proline content of flag leaves as well as grain yields were measured. The results showed that drought stress increased the activity of catalase and peroxidase and the content of proline in flag leaves, lessened the content of chlorophyll, deformed leaf veins, and decreased the grain yield. Exogenous proline could regulate the osmotic-regulation substance content, chlorophyll content, antioxidant enzyme activity, water-holding capacity, and tissue structure of wheat flag leaves under drought stress, ultimately alleviating the impact of drought stress on wheat yield. The application of proline (25 mM and 50 mM) increased the yield by 2.88% and 10.81% under mild drought and 33.90% and 52.88% under severe drought compared to wheat without proline spray, respectively.

6.
J Agric Food Chem ; 72(15): 8365-8371, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588402

RESUMO

Plant growth regulators (PGRs) play an important role in alleviating the detrimental effects of biotic and abiotic stress and improving crop yield and quality. As a novel PGR from Streptomyces registered in 2021, guvermectin (GV) has the potential to improve plant yield and defense, making its application in agriculture a subject of interest. Here, we describe the discovery process, functional activities, agricultural applications, toxicity, environmental safety, and biosynthetic mechanism of GV. This Perspective provides a guide for the development of novel PGRs from microorganisms.


Assuntos
Adenosina/análogos & derivados , Reguladores de Crescimento de Plantas , Plantas , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico , Agricultura , Desenvolvimento Vegetal
7.
Environ Toxicol Chem ; 43(5): 1149-1160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38517147

RESUMO

The integration of untargeted lipidomics approaches in ecotoxicology has emerged as a strategy to enhance the comprehensiveness of environmental risk assessment. Although current toxicity tests with soil microarthropods focus on species performance, that is, growth, reproduction, and survival, understanding the mechanisms of toxicity across all levels of biological organization, from molecule to community is essential for informed decision-making. Our study focused on the impacts of sublethal concentrations of the insecticide teflubenzuron on the springtail Folsomia candida. Untargeted lipidomics was applied to link changes in growth, reproduction, and the overall stress response with lipid profile changes over various exposure durations. The accumulation of teflubenzuron in organisms exposed to the highest test concentration (0.035 mg a.s. kg-1 soil dry wt) significantly impacted reproductive output without compromising growth. The results suggested a resource allocation shift from reproduction to size maintenance. This hypothesis was supported by lipid shifts on day 7, at which point reductions in triacylglycerol and diacylglycerol content corresponded with decreased offspring production on day 21. The hypermetabolism of fatty acids and N-acylethanolamines on days 2 and 7 of exposure indicated oxidative stress and inflammation in the animals in response to teflubenzuron bioaccumulation, as measured using high-performance liquid chromatography-tandem mass spectrometry. Overall, the changes in lipid profiles in comparison with phenotypic adverse outcomes highlight the potential of lipid analysis as an early-warning tool for reproductive disturbances caused by pesticides in F. candida. Environ Toxicol Chem 2024;43:1149-1160. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Artrópodes , Benzamidas , Reprodução , Animais , Reprodução/efeitos dos fármacos , Artrópodes/efeitos dos fármacos , Benzamidas/toxicidade , Inseticidas/toxicidade , Lipidômica , Metabolismo dos Lipídeos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Lipídeos
9.
Food Chem ; 444: 138666, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38341916

RESUMO

This work presents an efficient sorbent for plant growth regulators (PGRs) by regulating the defects of a metal-organic framework MIL-101(Cr). Using the regulated MIL-101(Cr), we developed a simple and effective method for the simultaneous determination of eleven PGRs in fresh fruit juice. The extraction conditions were optimized by an orthogonal array design. Under optimal conditions, the method showed a satisfactory limit of detection (0.1-1.2 ng/g), recovery rates (83.4-110.2 %), and precision (2.9-18.0 % for intra-day and 2.7-10.8 % for inter-day), as well as a greatly suppressed matrix effect. Notably, regulating the defects significantly enhanced the desorption of PGRs on MIL-101(Cr). The sorbent didn't need to be destroyed to release the adsorbed PGRs and could be reused at least 6 times. Furthermore, the defects of MIL-101(Cr) and interactions between the sorbent and PGRs were studied by TGA, ATR-IR, XPS, NH3-TPD and UV-Vis DRS.


Assuntos
Estruturas Metalorgânicas , Reguladores de Crescimento de Plantas/análise , Sucos de Frutas e Vegetais , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos
10.
BMC Res Notes ; 17(1): 45, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311772

RESUMO

OBJECTIVE: The high industrial demand for Stevia cultivation (Stevia rebaudiana) has increased due to its high stevioside content derived from the leaves. However, the low germination rate makes the cultivation of the plant become the main obstacle. Therefore, an efficient cultivation technique is required. This present work aims to analyze the effect of five combinations of Kinetin (Kin) and benzyladenine (BA) on stevia micropropagation using nodal segment explants. RESULTS: The micropropagation of stevia was performed using Murashige and Skoog (MS) medium supplemented with BA and Kin. We analyzed different organogenesis and callogenesis responses. In addition, the number of shoots and root formed during in vitro culture were also observed. Our results demonstrated that all treatments with Kin, both alone and in combination with BA, resulted in the development of callus on all nodal segment explants. Explants treated in MS with 1 mg L-1 BA exhibited the best average of shoot number (36.27). In contrast, the treatment without PGR resulted in the best root formation (2.6). The overall results suggested that different combination of BA and Kin resulted in distinct organogenesis responses, where 1 mg L-1 of BA was potentially used for boosting the number of shoots in micropropagation of stevia accession Mini.


Assuntos
Stevia , Stevia/genética , Indonésia , Brotos de Planta , Genótipo , Folhas de Planta
11.
Pestic Biochem Physiol ; 198: 105725, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225080

RESUMO

This study aimed to examine the effects of gibberellic acid (GBA) on growth, hemato-biochemical parameters related to liver functions, digestive enzymes, and immunological response in Oreochromis niloticus. Besides, the probable underlying mechanisms were explored by assessing antioxidant, apoptotic, and immune-related gene expression. Furthermore, the likelihood of restoration following alpha-lipoic acid (LIP) dietary supplementation was explored. The fish (average initial weight 30.75 ± 0.46) were equally classified into four groups: the control group, the LIP group (fed on a basal diet plus 600 mg/kg of LIP), the GBA group (exposed to 150 mg GBA/L), and the GBA + LIP group (exposed to 150 mg GBA/L and fed a diet containing LIP and GBA) for 60 days. The study findings showed that LIP supplementation significantly reduced GBA's harmful effects on survival rate, growth, feed intake, digestive enzymes, and antioxidant balance. Moreover, the GBA exposure significantly increased liver enzymes, stress markers, cholesterol, and triglyceride levels, all of which were effectively mitigated by the supplementation of LIP. Additionally, LIP addition to fish diets significantly minimized the histopathological alterations in the livers of GBA-treated fish, including fatty change, sharply clear cytoplasm with nuclear displacement to the cell periphery, single-cell necrosis, vascular congestion, and intralobular hemorrhages. The GBA-induced reduction in lysozyme activity, complement C3, and nitric oxide levels, together with the downregulation of antioxidant genes (cat and sod), was significantly restored by dietary LIP. Meanwhile, adding LIP to the GBA-exposed fish diets significantly corrected the aberrant expression of hsp70, caspase- 3, P53, pcna, tnf-a, and il-1ß in O. niloticus liver. Conclusively, dietary LIP supplementation could mitigate the harmful effects of GBA exposure on fish growth and performance, physiological conditions, innate immunity, antioxidant capability, inflammatory response, and cell apoptosis.


Assuntos
Ciclídeos , Giberelinas , Ácido Tióctico , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Suplementos Nutricionais , Ácido Tióctico/farmacologia , Ácido Tióctico/metabolismo , Ciclídeos/genética , Estresse Oxidativo , Expressão Gênica
12.
Sci Total Environ ; 913: 169788, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181951

RESUMO

The phytoremediation efficiency of plants in removing the heavy metals (HMs) might be influenced by their growth status and accumulation capacity of plants. Herein, we conducted a lab-scale experiment and a field try out to assess the optimal plant growth regulators (PGRs) including indole-3-acetic acid (IAA)/brassinolide (BR)/abscisic acid (ABA) in improving the phytoextraction potential of Sedum alfredii Hance (S. alfredii). The results of pot experiment revealed that application of IAA at 0.2 mg/L, BR at 0.4 mg/L, and ABA at 0.2 mg/L demonstrated notable potential as optimal dosage for Cd/Pb/Zn phytoextraction in S. alfredii. The findings of subcellular level of Cd/Pb/Zn in leaves showed that IAA (0.2 mg/L), BR (0.4 mg/L) or ABA (0.2 mg/L) promoted the HMs storage in the soluble and cell wall fraction, therefore contributing HMs subcellular compartmentation. In addition, application of PGRs notably enhanced the antioxidant system (SOD, CAT, POD, APX activities) while reducing lipid peroxidation (MDA content) in S. alfredii, consequently improving HMs tolerance and growth of S. alfredii. Moreover, the results of field trial showed that application of BR, IAA, or ABA+BR substantially improved the growth of S. alfredii by inducing plants biomass and augmenting the levels of photosynthetic pigment contents. Notably, ABA+BR noticed the highest theoretical biomass by 42.9 %, followed by IAA (41.6 %), and BR (36.4 %), as compared with CK. Additionally, ABA+BR treatment showed effectiveness in removing the Cd by 103.4 %, while BR and IAA led to a significant increase of Pb and Zn removal by 239 % and 116 %, respectively, when compared with CK. Overall, the results of this study highlights that the foliar application of IAA, BR, or ABA+BR can serve as viable strategy to boosting phytoremediation efficiency of S. alfredii in contaminated soil by improving the biomass and metal accumulation in harvestable parts.


Assuntos
Metais Pesados , Sedum , Poluentes do Solo , Cádmio/análise , Reguladores de Crescimento de Plantas , Chumbo , Metais Pesados/análise , Ácido Abscísico , Biodegradação Ambiental , Solo , Poluentes do Solo/análise , Raízes de Plantas/química
13.
J Agric Food Chem ; 72(3): 1462-1472, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197605

RESUMO

Insects' lipids, including fatty acids, as the second largest constituents in insects, play a variety of fundamental and vital functions. However, there is a lack of reports on the effects of insect growth regulators on fatty acid profiles and metabolic mechanisms. Therefore, in this study, a comparative study of three growth regulators, azadirachtin, pyriproxyfen, and tebufenozide, on fatty acids was carried out using a targeted metabolomics approach to fill this gap. The results showed that when exposed to azadirachtin, pyriproxyfen, and tebufenozide, there were 14, 17, and 11 differentially regulated fatty acids, respectively. The pathway of biosynthesis of unsaturated fatty acids was the common shared pathway, while fatty acid biosynthesis and linoleic acid metabolism were the specific pathways affected by the 3 insect growth regulators. Therefore, the results could be helpful to deepen the effects of azadirachtin and insect growth regulators on terrestrial insects.


Assuntos
Ácidos Graxos , Hidrazinas , Hormônios Juvenis , Limoninas , Piridinas , Tephritidae , Animais , Hormônios Juvenis/farmacologia , Larva , Ácidos Graxos/metabolismo , Insetos , Metaboloma
14.
Plants (Basel) ; 13(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38256705

RESUMO

An efficient and reproducible in vitro method for indirect somatic embryogenesis was optimized by culturing leaf and leaf with petiole explants of Lycium barbarum L. Murashige and Skoog (MS) medium, supplemented with various concentrations of Picloram and 2,4-Dichlorophenoxyacetic acid (2,4-D), individually and in combinations, were tested. Picloram (1.0 µM) showed a better response compared to 2,4-D and results indicate it to be a better auxin for induction of somatic embryos for Goji berry. It was seen that the leaf explants were more responsive in callus and somatic embryo induction than the leaf with petiole explant when incubated in the dark for 5 weeks. Embryogenic callus, after being transferred to MS medium containing Benzyl amino purine (BAP) in 1.0 µM, 5.0 µM and 10.0 µM, began to differentiate in light after one week. MS medium with 1.0 µM Picloram + 10 µM BAP resulted as the most favorable treatment for somatic embryogenesis in Lycium barbarum L. Removal of plant growth regulators from MS medium and culturing induced calluses under 16 h photoperiod resulted in globular, heart, torpedo, cotyledons, and further development into plantlets. Well-developed plants have been obtained and are capable of acclimatizing in ex vitro conditions. In addition, the effects of desiccation treatments (0, 1, 3, 6, 9 h, and 12 h) on embryogenic callus for somatic embryo induction were found to be directly proportional to the length of desiccation treatment at room temperature. After 9 h and 12 h of desiccation treatments, 60% and 90% of plated calluses resulted in somatic embryos, respectively. In a L. barbarum callus mass, Acetocarmine and Evans blue double staining differentiated between embryogenic and non-embryogenic callus. These findings will help Goji berry improvement by elite clone production, ex situ conservation projects, scaling up plant production, and agronomy for the commercial production of this superfruit in the future.

15.
Plants (Basel) ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256750

RESUMO

Flavanone 3-hydroxylase (F3H) catalyzes trihydroxyflavanone formation into dihydroflavonols in the anthocyanin biosynthesis pathway, serving as precursors for anthocyanin synthesis. To investigate the CsF3Ha promoter's regulation in the 'Zijuan' tea plant, we cloned the CsF3Ha gene from this plant. It was up-regulated under various visible light conditions (blue, red, and ultraviolet (UV)) and using plant growth regulators (PGRs), including abscisic acid (ABA), gibberellic acid (GA3), salicylic acid (SA), ethephon, and methyl jasmonate (MeJA). The 1691 bp promoter sequence was cloned. The full-length promoter P1 (1691 bp) and its two deletion derivatives, P2 (890 bp) and P3 (467 bp), were fused with the ß-glucuronidase (GUS) reporter gene, and were introduced into tobacco via Agrobacterium-mediated transformation. GUS staining, activity analysis, and relative expression showed that visible light and PGRs responded to promoter fragments. The anthocyanin content analysis revealed a significant increase due to visible light and PGRs. These findings suggest that diverse treatments indirectly enhance anthocyanin accumulation in 'Zijuan' tea plant leaves, establishing a foundation for further research on CsF3Ha promoter activity and its regulatory role in anthocyanin accumulation.

16.
Plants (Basel) ; 13(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256845

RESUMO

Black knot (BK) is a deadly disease of European (Prunus domestica) and Japanese (Prunus salicina) plums caused by the hemibiotrophic fungus Apiosporina morbosa. Generally, phytopathogens hamper the balance of primary defense phytohormones, such as salicylic acid (SA)-jasmonic acid (JA) balance, for disease progression. Thus, we quantified the important phytohormone titers in tissues of susceptible and resistant genotypes belonging to European and Japanese plums at five different time points. Our previous results suggested that auxin-cytokinins interplay driven by A. morbosa appeared to be vital in disease progression by hampering the plant defense system. Here, we further show that such hampering of disease progression is likely mediated by perturbance in SA, JA, and, to some extent, gibberellic acid. The results further indicate that SA and JA in plant defense are not always necessarily antagonistic as most of the studies suggest but can be different, especially in woody perennials. Together, our results suggest that the changes in phytohormone levels, especially in terms of SA and JA content due to BK infection and progression in plums, could be used as phytohormonal markers in the identification of BK-resistant cultivars.

17.
Mar Pollut Bull ; 199: 115916, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150978

RESUMO

The combination of fish emulsion (FE) and the actinobacterial isolate, Streptomyces griseorubens UAE1 (Sg) capable of producing plant growth regulators (PGRs) and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, was evaluated on mangrove (Avicennia marina) in the United Arab Emirates. Under greenhouse and field conditions, sediments amended with the biostimulant FE effectively enhanced mangrove growth compared to those inoculated with Sg only. Plant growth promotion by Sg was more pronounced in the presence of FE (+FE/+Sg) than in individual applications. Our data showed that Sg appeared to use FE as a source of nutrients and precursors for plant growth promotion. Thus, in planta PGR levels following the combined +FE/+Sg were significantly induced. This is the first report in the field of marine agriculture that uses FE as a nutrient base for soil microorganisms to promote mangrove growth. This study will support mangrove restoration along the Arabian Gulf coastline as a nature-based solution to changing climate and economic activities.


Assuntos
Actinobacteria , Avicennia , Emulsões , Desenvolvimento Vegetal , Bactérias , Raízes de Plantas
18.
Parasitol Res ; 123(1): 23, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072863

RESUMO

Using Pyriproxyfen in controlling Aedes aegypti shows great potential considering its high competence in low dosages. As an endocrine disruptor, temperature can interfere with its efficiency, related to a decrease in larval emergence inhibition in hotter environments. However, previous studies have been performed at constant temperatures in the laboratory, which may not precisely reflect the environmental conditions in the field. The aim of this study was to assess the effect of the fluctuating temperatures in Pyriproxyfen efficiency on controlling Aedes aegypti larvae. We selected maximum and minimum temperatures from the Brazilian Meteorological Institute database from September to April for cities grouped by five regions. Five fluctuating temperatures (17-26; 20-28.5; 23-32.5; 23-30.5; 19.5-31 °C) were applied to bioassays assessing Pyriproxyfen efficiency in preventing adult emergence in Aedes aegypti larvae in five concentrations. In the lowest temperatures, the most diluted Pyriproxyfen treatment (0.0025 mg/L) was efficient in preventing the emergence of almost thrice the larvae than in the hottest temperatures (61% and 21%, respectively, p value = 0.00015). The concentration that inhibits the emergence of 50% of the population was lower than that preconized by the World Health Organization (0.01 mg/L) in all treatments, except for the hottest temperatures, for which we estimated 0.010 mg/L. We concluded that fluctuating temperatures in laboratory bioassays can provide a more realistic result to integrate the strategies in vector surveillance. For a country with continental proportions such as Brazil, considering regionalities is crucial to the rational use of insecticides.


Assuntos
Aedes , Inseticidas , Animais , Larva , Temperatura , Controle de Mosquitos , Mosquitos Vetores , Inseticidas/farmacologia
19.
Plants (Basel) ; 12(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140453

RESUMO

Somatic embryogenesis (SE) has many applications in grapevine biotechnology including micropropagation, eradicating viral infections from infected cultivars, mass production of hypocotyl explants for micrografting, as a continuous source for haploid and doubled haploid plants, and for germplasm conservation. It is so far the only pathway for the genetic modification of grapevines through transformation. The single-cell origin of somatic embryos makes them an ideal explant for mutation breeding as the resulting mutants will be chimera-free. In the present research, two combinations of plant growth regulators and different explants from flower buds at two stages of maturity were tested in regard to the efficiency of callusing and embryo formation from the callus produced in three white grape cultivars. Also, the treatment of somatic embryos with the chemical mutagen ethyl methanesulfonate (EMS) was optimised. Medium 2339 supplemented with ß-naphthoxyacetic acid (5 µM) and 6-benzylaminopurine (BAP-9.0 µM) produced significantly more calluses than medium 2337 supplemented with 2,4-dichlorophenoxyacetic acid (4.5 µM) and BAP (8.9 µM) in all explants. The calluses produced on medium 2337 were harder and more granular and produced more SEs. Although the stage of the maturity of floral bud did not have a significant effect on the callusing of the explants, calluses produced from immature floral bud explants in the premeiotic stage produced significantly more SEs than those from more mature floral buds. Overall, immature ovaries and cut floral buds exposing the cut ends of filaments, style, etc., tested for the first time in grapevine SE, produced the highest percentage of embryogenic calluses. It is much more efficient to cut the floral bud and culture than previously reported explants such as anthers, ovaries, stigmas and styles during the short flowering period when the immature flower buds are available. When the somatic embryos of the three cultivars were incubated for one hour with 0.1% EMS, their germination was reduced by 50%; an ideal treatment considered to obtain a high frequency of mutations for screening. Our research findings will facilitate more efficient SE induction in grapevines and inducing mutations for improving individual traits without altering the genetic background of the cultivar.

20.
Biomolecules ; 13(11)2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002316

RESUMO

Freshwater scarcity is a major global challenge threatening food security. Agriculture requires huge quantities of water to feed the ever-increasing human population. Sustainable irrigation techniques such as deficit drip irrigation (DDI) are warranted to increase efficiency and maximize yield. However, DDI has been reported to cause water stress in plants. The study aimed to investigate the influence of the exogenous application of salicylic acid alone (SA) or in combination with glycine betaine (GB) on the growth, yield quality, and water-use efficiency of onions under different DDI treatments (100%, 70%, and 40% field capacity (FC)). Spray treatments (sub-treatments) were as follows: T1: (distilled water), T2: (1.09 mM SA), T3: (1.09 mM SA + 25 mM GB), T4: (1.09 mM SA + 50 mM GB), and T5: (1.09 mM SA + 100 mM GB). Our results indicated that T2 slightly ameliorated the effects of water stress by improved plant heights, leaf number, pseudostem diameter, bulb quality, and nutrient content of onion bulbs, especially under the 70% FC treatment. However, T3 recorded the poorest results on leaf number, pseudostem diameter, and bulb quality under the 70% and 40% FC treatments. Generally, our results indicated that onions could tolerate moderate water stress (70% FC) without severely affecting the growth and yield of onion. In conditions where freshwater is a limiting factor, a DDI treatment of 40% FC is recommended.


Assuntos
Betaína , Cebolas , Humanos , Betaína/farmacologia , Desidratação , Adaptação Psicológica , Biometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA